Qazaq Journal of Young Scientist Vol. 3, No. 6.1 (Special Issue), 2025

UDC 004.032.26
RESEARCH AND IMPLEMENTATION OF NEURAL NETWORKS

Samalikov Farabi
master’s student, Department of Computer Engineering, Astana IT University,
Astana, Kazakhstan

Oralbekova Zhanar,.
PhD in Computer Science, associate professor, the Department of Computational
and Data Sciences, Astana IT University, Astana, Kazakhstan

This article explores the application of neural networks in software testing,
detailing their theoretical underpinnings, practical implementation, and innovative
approaches. It highlights how neural networks can significantly enhance software
testing processes by automating functions and improving fault detection capabilities.
Empirical validation through a case study on credit card approval software
demonstrates the effectiveness and efficiency of neural network methodologies. The
article also addresses potential challenges such as data quality, computational
resource demands, interpretability, and overfitting, providing a comprehensive
overview of neural networks' transformative potential in software engineering.

Keywords: neural networks, software testing, automated oracle, fault detection,
generative algorithms, machine learning, empirical validation.

Introduction

Neural networks, sophisticated computational structures inspired by the
biological neural systems found within the human brain, have progressively become
integral components across various technological domains. Initially making
substantial impacts in fields such as healthcare, finance, and transportation, neural
networks have more recently emerged as vital tools in software engineering,
particularly software testing. Their adaptive learning capabilities, ability to recognize
complex patterns, and proficiency in processing vast datasets position them uniquely
to transform traditional software testing methodologies.

In the broader context of technological innovation, the integration of advanced
artificial intelligence methods, including generative models, continues to reshape
diverse sectors, including education and software development. Generative Al
technologies—comprising natural language processing, machine learning, and neural
networks—have demonstrated their transformative power by offering personalized
experiences, enabling adaptive feedback, and identifying complex patterns across
large datasets. Their role in software testing similarly opens new horizons for

87

https://qazaqgjournal.kz/ ISSN: 2959-1279

customizing testing processes, optimizing test coverage, and detecting faults that
traditional methods might overlook.

However, with the advancement of Al-driven methodologies, new challenges
arise. Ethical considerations, including the transparency and accountability of Al
decisions, become critical when AI models influence significant outcomes, such as
software validation. Data privacy, algorithmic bias, and equitable access to Al-
enhanced testing tools also emerge as crucial topics. Developers and testers must
therefore be equipped not only with technical proficiency but also with a deep
understanding of digital ethics, data security, and Al reliability.

This article synthesizes comprehensive theoretical foundations alongside
practical implementation insights derived from research conducted at Astana IT
University. It specifically examines the revolutionary role neural networks can play
within software testing, emphasizing their potential in automating oracle functions
and enhancing fault detection capabilities. Through detailed exploration and
empirical evaluation, this article highlights the innovations neural networks bring to
software testing processes, ultimately aiming to enhance accuracy, efficiency, and
adaptability in testing practices.

Theoretical Foundations of Neural Networks

Neural networks comprise interconnected computational units or neurons
designed to emulate biological neurons' synaptic connections. Key architectural
components include input, hidden, and output layers, employing activation functions
such as sigmoid, ReLU, or Softmax, which determine neuron activation states based
on inputs.

The backpropagation algorithm stands out as the cornerstone for training
multilayer feedforward networks. By iteratively adjusting synaptic weights, neural
networks minimize the error between predicted and actual outputs. Challenges such
as local minima in error surfaces are mitigated through techniques like cross-
validation, hyperparameter tuning, and network retraining with varied initializations.

QOutput
AJ|

/-"‘
> L

Activation
x; © Function
Input

Qazaq Journal of Young Scientist Vol. 3, No. 6.1 (Special Issue), 2025

Training Phase

Tested Program
(may contain faults)

Legal Test Cases Program Output
(randomly generated)

Neural Network Tramed
Traming Network

Fig.2

Software Implementation and Methodology

Utilizing frameworks like TensorFlow and PyTorch, neural network models are
developed, optimized, and evaluated against diverse datasets. Effective data
preprocessing, including normalization and augmentation, ensures high-quality
inputs, enhancing model accuracy and generalization capabilities.

of Artificial Neural] Network
Network Output
‘ . e
Decision:
Input Calculate the _] Output Erronecous
Data Distance or
Output Correct
= Fauhy Actual |
Application Output
Fig.3

Innovative Approach: Neural Networks in Software Testing The uploaded paper
outlines an innovative methodology employing neural networks as automated oracles
within software testing. Traditionally, test oracles verify the correctness of software
outputs against expected results. However, manual oracles are labor-intensive and
error-prone, while automated oracles often lack adaptability to new software
versions.

This research introduces neural networks trained on original software versions'
outputs using random, specification-conforming test data. By comparing outputs of
new software versions against neural network predictions, the methodology

89

https://qazagjournal.kz/ ISSN: 2959-1279

effectively identifies discrepancies indicative of faults. This approach significantly
reduces testing costs and improves accuracy, especially during regression testing.

Integration of Generative Algorithms

Further enhancing the robustness and generalization of neural models, generative
algorithms like GANs (Generative Adversarial Networks) and VAEs (Variational
Autoencoders) were proposed for data augmentation. These algorithms produce
synthetic yet realistic data samples, addressing dataset limitations and improving
neural network performance.

Strategies for

integrating ! Effective

Generative - Implementation
Artificial
Intelligence :

(AI) into
educational
contexts

Fig.4

Results and Insights

During experimental validation, a variational autoencoder (VAE) model was
trained on the processed credit approval dataset. The VAE architecture was optimized
using the Adam optimizer, and training proceeded over 30 epochs with a batch size of
128. As illustrated in the training log, the loss function demonstrated consistent
convergence, decreasing steadily from an initial value of 176.88 to 156.79 by the
thirteenth epoch. This indicates the model’s ability to effectively learn the underlying
data distribution and reconstruct the input space with reduced error.

Additionally, time series forecasting was employed to predict trends based on
fault detection data using various smoothing models such as the Brown Model, Holt-
Winters Model, and Trigg-Lich Model. Forecasting results, visualized through a
plotted graph, revealed an upward trend in model performance and fault detection
accuracy over time. The Holt-Winters model, incorporating both trend and seasonal
components, proved particularly effective in adapting to complex periodic data
patterns, offering valuable predictive insights for continuous monitoring of software
quality.

These results underscore the potential of combining neural network models with
time series analysis to enhance fault prediction, optimize maintenance schedules, and
ensure sustained reliability in evolving software systems.

90

Qazaq Journal of Young Scientist Vol. 3, No. 6.1 (Special Issue), 2025

Brown Forecast
%0
80 4
70 1
60
£
% 501
8
o
40 4
30 4
201 — actual
- Brown Forecast
1970 1971 1972 1973 1974 1975 1976 1977 1978
Date
Fig.5
1 latent_dim =2
2 vae=VAE(latent_dim)
3 optimizer = tf.keras.optimizers.Adam()
4 @tf.function
5 ~ def train_step(x):
6 Vv with tf.GradientTape() as tape:
7 reconstructed, mu, log_var = vae(x)
8 loss = vae.compute_loss(x, reconstructed, mu, log_var)
9 gradients = tape.gradient(loss, vae.trainable_variables)
18 optimizer.apply_gradients{zip(gradients, vae.trainable_variables)
1 return loss
12

13 # 06yueHune
14 epochs = 38
15 batch_size = 128

16

17 ~ for epoch in range(epochs):

18 Vv for 1 in range(®, len(x_train), batch_size):

19 x_batch = x_train[i:i + batch_size]

28 loss = train_step(x_batch)

21 print(f'Epoch {epoch + 1}, Loss: {loss.numpy()}')

10 2MdULleE LINEm LN ULNer UperdLluns,
Epoch 1, Loss: 176.88998413085938
Epoch Loss: 173.79483686523438
Loss: 169.65579223632812
Loss: 166.28977966308594
Epoch Loss: 164.37161254882812

2,
Epoch 3,
4,
5,

Epoch 6, Loss: 163.59764899121094
7’
8,
9'

Epoch

Loss: 162.5578155517578
Loss: 161.3791046142578
Epoch Loss: 16@.0158604248047
Epoch 1@, Loss: 158.47474670410156
Epoch 11, Loss: 158.@936737@60547
Epoch 12, Loss: 157.31736755371094
Epoch 13, Loss: 156.7999420816608156

Fig.6

Epoch
Epoch

91

https://qazaqgjournal.kz/ ISSN: 2959-1279

Potential Challenges

Data Quality and Availability: Datasets often contain a large number of features,
many of which may be redundant or irrelevant. This leads to overfitting and reduces
model performance. Effective feature selection and dimensionality reduction
techniques are critical to mitigate this risk.

Class Imbalance: In many software fault prediction datasets, non-faulty instances
vastly outnumber faulty ones. This imbalance causes models to be biased towards the
majority class, lowering fault detection rates for critical faulty modules.

Noisy and Redundant Data: Datasets may contain erroneous, duplicated, or
irrelevant entries, which can mislead the learning process and degrade the predictive
capability of neural networks.

Missing Values: Incomplete data entries can result in inaccurate model training,
necessitating preprocessing techniques such as imputation or discarding corrupted
samples.

Class Overlapping: In some cases, characteristics of faulty and non-faulty classes
are very similar, making it challenging for models to distinguish between them.
Advanced classification techniques or additional feature engineering may be required
to address this issue.

New Instance

Fuault Prediction

v

L

Software Repository Software Fault Dataset Data Preprocessing

Performance Measures

Fig.7

Computational Resources: Neural network training requires substantial
computational power and time, particularly when employing deep learning
architectures or extensive hyperparameter tuning, potentially limiting practical
applicability.

Interpretability and Transparency: Neural networks often act as "black boxes,"
complicating efforts to interpret their decision-making processes clearly. This lack of
transparency can hinder trust and acceptance, especially in critical testing scenarios.

Overfitting and Generalization: Achieving optimal generalization without
overfitting training data can be complex, necessitating rigorous validation techniques
and careful model design.

92

Qazaq Journal of Young Scientist Vol. 3, No. 6.1 (Special Issue), 2025

Conclusion

In conclusion, neural networks present a transformative potential in software
testing by fundamentally reshaping traditional methodologies through automation and
enhanced fault detection capabilities. By utilizing multilayered neural network
architectures, trained via rigorous backpropagation algorithms, the proposed
methodology effectively minimizes the manual effort required in verifying software
correctness and significantly improves fault detection accuracy. The empirical study
demonstrated through the credit card approval software clearly illustrates the neural
network's proficiency in identifying both intentional and unintentional faults
efficiently. Moreover, integrating generative algorithms such as GANs and VAEs
significantly enriches the training datasets, enhancing the neural network's
robustness, resilience, and adaptability to evolving software environments.
Ultimately, this approach not only streamlines testing processes, reducing costs and
resource expenditures, but also establishes new benchmarks for reliability and
performance, driving further innovation and progress in software engineering
practices.

REFERENCES

1. Michael Nielsen. Neural Networks and Deep Learning. 2015.

2. Chris M. Bishop. Neural Networks and Their Applications. 1994.

3. D.H. Nguyen, B. Widrow. Neural Networks for Self-Learning Control
Systems. 1990.

4. Koushal Kumar, G.S.M. Thakur. Advanced Applications of Neural Networks
and Artificial Intelligence: A Review. 2012.

5. Manavendra Misra, Brad Warner. Understanding Neural Networks as
Statistical Tools. 1996.

6. J.A. Anderson. Two Models for Memory Organization. Mathematical
Biosciences, 1970.

7. G. Cybenko. Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals, and Systems, 1989.

8. Z.Khabazi. Generative Algorithms. 2011.

9. Stanford University. Generative Learning Algorithms — CS229 Lecture
Notes. 2008.

10.Inés Caetano. Computational Design in Architecture: Defining Parametric,
Generative, and Algorithmic Design. Frontiers of Architectural Research, 2020.

11. Ali Bou Nassif, Mohammad Azzeh, Luiz F. Capretz, Danny Ho. Neural
Network Models in Software Engineering Applications. 2021.

93

https://qazaqgjournal.kz/ ISSN: 2959-1279

HEWPOHJIBIK KEJIIJIEPII 3EPTTEY KOHE BAF JAPJIAMAJIBIK
TYPIAE KY3EI'E ACBIPY

Camanukoe @apaou, Opanoekosa Kanap

byn makanaoa metiponowix odiceninepoi 6azoapiamanvi mecmiieyoe
KOJLOQHBLILYbL, OJIapObl MEeOPUSIbIK He2iz0epi, NPAKMUKAILIK ICKe ACLIPLLLYbL HCIHE
UHHOBAYUALIK MACiIdepi e2oiceli meedcelni Kapacmuipovliaovl. OHOa HeUpoHObIK
oceninep PYHKYUAIAPLIH ABMOMAMMAHObIPY — JiCOHe — aKayiapobl — AHLIKMAY
MYMKIHOIKmMepIiH Jcakcapmy apkKulivl 0a20aplamanvl mecmiiey npoyecmepiu
aumapavikmai Jcakcapma — aramvinbl - Kepcemineen. Hecuenik xapmanapowi
MaKynoay 6az0apramanviy HcacakmamacvlH Keuc-cmaou apxblibl IMAUPUKATBIK
mexcepy HeupoHObIK Jcelll d20icmemenepiniy muimoiniei MeH muimMoiniein Kkepcemeol.
Maxanaoa convimen Kamap depekmep candacwl, ecenmey pecypcmapbiia KOubliambvliH
mananmap, UHMePNPemayusiany JHcoHe WaAMaoan melC CIUKeCmiK —CUSKMbl
BIKMUMANL Macenenep Kapacmuipuliaovl, 0¥l 6a20aplamanivlk KAMMAMAcsl3 emyoi
a3ipaeyoe2i HetpOHObIK JHCelinepOiy, MPAHCHOPMAYUATBIK dlleyemine HCAH-HCAKMbL
ULOTLY JHcacaiowl.

Kiar ce3nepi: HelipoHABIK kemniep, OaraapiaMaiblK KacaKTaMaHbl TECTLUIEY,
aBTOMATTaHABIPBUIFAH oOracle, akaynapabl aHBIKTay, TE€HEPAaTUBTI aNTOPUTMIED,
MAaITUHAJIBIK OKBITY, SIMITUPUKAIIBIK TEKCEPY.

HUCCJEJOBAHUE U PEAJINBALINS HEMPOHHBIX CETEN
Camanuxoe @apaou, Opanoexosa /Kanap

Cmamvsi paccmampusaem npuUMeHeHUue HeUPOHHbIX cemell 6 Npoyecce
Mecmupo8anust. NPOSPAMMHO20 00eCneyeHusl, PACKpblédass Ux meopemuyecKue
OCHOBbL, NPAKMUYECKYIO Peaiu3ayuio U UHHOBAYUOHHbIE NOOX00bl. [loduéprusaemcs,
YMoO HEUPOHHbIE Cemu MO2YM 3HAYUMENbHO VIAVYUWUMb NPOYeCccbl MeCmupoB8aHus
NPOCPAMMHO20 ODecneyeHust 3a C4eém aemoMamu3ayuu @QYHKyull U noGvluleHUs
MOYHOCMU 0OHapydcenus owuboK. Dmnupuueckas npoeepKka HaA npumepe
NPOCPAMMHO20 oObecnedenusi 0ns 0000peHUsi KPeOUmHbIX Kapm OeMOHCmpupyem
agpghexkmusnocmob U pe3yIbMAMUBHOCb NPEONONCEHHbIX ~ Memoouk. Taxoce
00CyoHCOalomest NOMEHYUAIbHbIE MPYOHOCMU, MAaKue KaK Kauyecmeo OaHHbIX,
HOMPEOHOCU 8 BLIMUCTUMETbHBIX PeCcypcax, UHMeEpnpemupyemocms u npooiema
nepeoOyuenus, obecneyusas — KOMMWIEKCHbIU — 0030p mpanchopmupyoue2o
HOMEHYUANA HEeUPOHHBIX cemell 8 001aAcmu NPOSPAMMHOU UHHCEHEPUL.

KiroueBble cjoBa: HEHPOHHBIE CETH, TECTUPOBAHHWE MPOTPAMMHOIO
oOecrieueHus, aBTOMAaTU3UPOBAHHBIN OpaKyJjl, OOHAPYKEHUE OIMNOOK, TeHEpaTUBHBIC
aJITOPUTMBI, MAIIIMHHOE 00YYCHHE, YMITUPUUYCCKAs IIPOBEPKa

94

