
https://qazaqjournal.kz/                                                                                            ISSN: 2959-1279 

 

242 

 

 

 

UDC 519.688:536.24 

 

TWO-DIMENSIONAL TWO-PHASE DIRECT STEFAN PROBLEM 

USING PHYSICS-INFORMED NEURAL NETWORKS (PINNS) 

 

Maidanova Symbat 

 

Applied data Analytics, Department of Computational and Data Science 

Astana IT University, Astana, Kazakhstan 

 

Building on recent advances in Physics-Informed Neural Networks (PINNs) for 

two-dimensional Stefan problems, this paper presents a novel framework that extends 

these methods to address the more challenging two-phase Stefan problem. The Stefan 

problem models phase-change phenomena—such as melting and solidification—

where a dynamically moving interface separates distinct thermal phases. Traditional 

numerical methods (e.g., finite difference and finite element techniques) often 

struggle with complex geometries and evolving boundaries. In contrast, our PINN-

based approach directly incorporates the governing partial differential equations 

(PDEs), the Stefan condition, and the associated initial and boundary conditions into 

the neural network’s loss function. By reviewing and building upon prior PINN 

implementations for single-phase 2D Stefan problems, we adapt and enhance the 

methodology to simultaneously approximate the temperature fields in both the liquid 

and solid phases and to accurately capture the motion of the interface. Advanced 

sampling strategies are employed to ensure high resolution in regions with steep 

gradients. Numerical experiments demonstrate rapid convergence and high 

accuracy, with error metrics that compare favorably to classical methods. 
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I. INTRODUCTION  
 

In nature and technology, phase-change phenomenon is ubiquitous, from ice 

formation and melting to metal solidification and crystal growth. The Stefan problem 

models such processes, in which a sharp interface separates different thermal phases. 

Conventionally, such problems are solved using finite difference and finite element 

methods but their performance declines in complex, higher-dimensional geometries 

because those typically require a mesh to be frequently updated and adaptively 

refined in the vicinity of dynamically evolving interfaces.  
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Recent developments of machine learning — especially the invention of Physics-

Informed Neural Networks (PINNs) — provide an exciting alternative. PINNs have 

been previously implemented for two-dimensional single-phase Stefan problems, 

where the governing partial differential equations (PDEs) and associated boundary 

and initial conditions are directly embedded into the loss function of a deep neural 

network. For example, Wang and Perdikaris [1] showcased the power of deep 

learning methods to solve the free boundary and Stefan problems, while Li et al. and 

to solve two-dimensional Stefan problem more efficiently, Yang et al. [2] proposed 

an enhanced PINN framework with few-shot learning. These works form a strong 

basis that demonstrate how PINNs can naturally cope with irregular domains and 

moving boundaries in a manner not bound by the limitations of traditional 

discretization methods.  

Our work builds upon these advances and extends the methodology to the more 

difficult two-phase Stefan problem. To this end, rather than performing single 

thermal phase modeling, our framework aims to characterize the temperature 

evolution both in liquid and solid phases simultaneously and to capture the moving 

interface correctly. To do so, we devise a new PINN-based methodology consisting 

of different neural network approximations for each phase combined with an adaptive 

sampling approach, clustering training points at regions of high solution gradients. In 

addition, we also adjust the loss function to account for the multiple physical 

constraints of the two-phase systems.  

The rest of this paper is organized as follows: A detailed mathematical 

formulation of two-dimensional two-phase Stefan problem is given in Section II. 

Section III describes our methodology of the PINN-based solution statement, 

including details of network architecture, loss function design,and training 

procedures. Section V offers a summary of findings and discusses future research 

avenues. 

II. LITERATURE REVIEW 
 

A. Overview of Traditional Numerical Methods and some of the Neural 

Network methods 

 

The Stefan problem, which models phase-change phenomena (e.g., melting and 

freezing), has a long history in the literature. Classical texts such as Alexiades and 

Solomon [1] and Crank [2] laid the groundwork by formulating the mathematical 

modeling of melting and freezing processes and developing numerical schemes based 

on finite difference and finite element methods. Early numerical methods for the 

Stefan problem are also discussed in Lagaris et al. [3].  

More recently, Physics-Informed Neural Networks (PINNs) have emerged as a 

powerful alternative for solving PDEs without traditional discretization. Raissi et al. 

[4] introduced PINNs to solve forward and inverse problems involving nonlinear 

PDEs, while Wang and Perdikaris [5] further investigated strategies to mitigate 
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gradient pathologies in PINNs. Methods such as the deep Galerkin method proposed 

by Sirignano and Spiliopoulos [6] and the fractional PINNs introduced by 

Karniadakis et al. [7] have expanded the toolkit available for these types of problems. 

In addition, Han and Jentzen [8] and Wan and Perdikaris [9] have applied PINNs to 

highdimensional settings, and Sifan and Perdikaris [10] specifically targeted inverse 

and direct Stefan problems. A comprehensive review of physics-informed machine 

learning techniques is given in Karniadakis et al. [11]. 

In parallel, several deep learning approaches have been applied to solve PDEs via 

operator learning and convolutional neural networks. Dong et al. [12] proposed an 

operator learning framework for high-dimensional PDEs, while Lu et al. [13] 

introduced DeepONet based on the universal approximation theorem of operators. Li 

et al. [14] demonstrated the application of convolutional neural networks to heat 

transfer problems. Almajid et al. [15] further developed sparse regression techniques 

for physics-informed learning, enhancing the efficiency of data-driven PDE 

discovery. 

Other neural network architectures have also been explored. Kim, Lu, and 

Karniadakis [16] employed attentionbased neural networks to address spatiotemporal 

challenges, which is particularly useful for complex phase-change problems. 

Reinforcement learning approaches for PDEs involving phase transitions have been 

studied, while Kaur and Gupta [17] applied multi-agent reinforcement learning for 

phase boundary modeling. Generative adversarial networks (GANs) have been used 

for inverse heat transfer problems by Laga et al. [18].  

In summary, while classical methods [1]–[3] provide a solid foundation for the 

study of phase-change phenomena, recent advances in PINNs and deep learning [4]–

[16] along with reinforcement and generative approaches [18] and data-driven 

discovery have broadened the scope of techniques available to tackle complex free-

boundary problems. Our work builds on these contributions by developing a PINN-

based framework to efficiently solve the two-dimensional two-phase Stefan problem, 

integrating ideas from both classical numerical analysis and modern machine learning 

methodologies. 

 

 
 

Fig. 1. Grid diagram illustrating spatial and temporal discretization in FDM. 
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B. PINNs for PDEs and Extension to Two-Dimensional TwoPhase Stefan 

Problems 

 

Physics-Informed Neural Networks (PINNs) offer an  attractive alternative to 

traditional discretization-based methods by embedding the governing physical laws 

directly into the network’s loss function. Instead of relying on fixed grids, PINNs 

provide continuous and differentiable approximations to the solution across the entire 

domain. This approach avoids the pitfalls of grid discretization and can more 

naturally accommodate irregular domains and non-linear problems. In practice, 

PINNs solve PDEs by sampling collocation points from the domain and minimizing 

the loss over these points. A visualization of the sampling process might include:  

• A grid-like distribution of collocation points in a 2D domain.  

• Highlighted boundary and interior points used during training. 

 

TABLE I.  PARAMETERS USED IN THE PINN MODEL 

Parameter 
Table Column Head 

Description Value 

Learning Rate Optimizer learning rate 1 × 10−3  

Number of layers Depth of the neural network 5 

Neurons per Layer Width of each hidden layer 50 

Activation Activation function tahnk 

 

While previous studies have primarily focused on one-dimensional problems as a 

benchmark, the extension to two-dimensional two-phase Stefan problems introduces 

new challenges. In two dimensions, the moving boundary becomes significantly more 

complex, and the problem must account for the temperature fields in both the liquid 

and solid phases.  

This added complexity requires: 

• Enhanced sampling strategies to capture steep gradients near the phase 

boundary. 

• Modified loss functions that effectively balance the competing physical 

constraints of the two-phase system. 

In our work, we build on the successes of PINNs in twodimensional benchmark 

problems and extend the framework to address  

the more challenging two-dimensional two-phase Stefan problem. This extension 

not only demonstrates the scalability of the PINN approach but also contributes to 

advancing the state-of-the-art in solving phase-change problems using deep learning. 

 

C. Two-Dimensional Stefan Problem solved by PINN benchmarking 

 

Two-dimensional Stefan problems have long served as a critical testbed for 

developing and validating numerical methods for phase-change phenomena. 
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Traditional numerical approaches, such as finite difference and finite element 

methods, have been extensively applied to these problems. However, the intrinsic 

challenges of capturing moving boundaries and handling irregular geometries often 

limit their efficiency and accuracy. 

Recent advances in deep learning have paved the way for alternative approaches 

that can overcome these limitations. In particular, the framework developed by Wang 

and Perdikaris [1] demonstrates the effectiveness of Physics-Informed Neural 

Networks (PINNs) in solving two-dimensional free boundary and Stefan problems. 

Their work shows how PINNs can incorporate the underlying physics—via the 

governing partial differential equations (PDEs) and associated boundary conditions—

directly into the training process. This approach not only provides a mesh-free 

solution method but also delivers robust performance in both direct and inverse 

problem settings. Their framework successfully resolves the evolving interface in a 

two-dimensional setting by training multiple neural networks to approximate the 

latent solution and the unknown free boundary.  

Building on these ideas, Li et al. [2] introduced an improved PINN framework 

that integrates small sample learning to address two-dimensional Stefan problems. 

Their strategy focuses on enhancing prediction accuracy in regions with steep 

solution gradients by using adaptive sampling techniques and a modified loss 

function. The inclusion of small sample learning enables the network to achieve high-

resolution approximations of the moving boundary even when limited training data 

are available. This refinement is particularly significant in twodimensional scenarios, 

where the complexity of the domain often leads to difficulties in accurately capturing 

phase transitions. These studies not only underscore the use of PINN in solving such 

problems, also provides conceptual groundwork that we are going to use in our 

research 

 

III. TWO-DIMENSIONAL STEFAN PROBLEM OVERVIEW 
 

A. Two-Dimensional Stefan Problems 

The two-dimensional one-phase Stefan problem represents a critical class of 

phase-change problems where heat transfer and moving boundaries in two spatial 

dimensions are analyzed. In this section, we explore the mathematical formulation 

and challenges associated with these problems, which set the stage for extending the 

framework to two-phase scenarios.  

The mathematical formulation of the two-dimensional onephase Stefan problem 

involves solving the heat equation in a domain Ω(t) subject to initial and boundary 

conditions and a moving phase-change boundary S(y, t): 

 

      (1) 

where: 
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• u(x, y, t) is the temperature at position (x, y) and time t,  

• α is the thermal diffusivity.  

 

 
 

Fig. 2. Illustration of the Stefan problem domain with boundary conditions. 

 

The phase-change boundary S(y,t) satisfies the Stefan condition: 

 

      (2) 

 

where L is the latent heat of phase transition and κ is the thermal conductivity. For 

completeness, the heat equation and boundary conditions can also be stated as: 

 

     (3) 

 

   (4) 

 

B. Governing Equations for the 2D2P Stefan Problem that is applied in model 

formulation for Neural Network 
 

The governing equations for the 2D2P Stefan problem are formulated as follows:  

Heat Equations: 

 

   (5) 

 

   (6) 

 

where  and  denote the thermal diffusivities for the liquid and solid phases, 

respectively. 

Initial Conditions: 

  (7) 

   (8) 
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             (9) 

 

Stefan Condition (at the interface S(y, t)): 

 

     (10) 

 
where  is the latent heat and  represents the thermal conductivity (assumed equal 

for both phases). 

Boundary Conditions (Dirichlet): 

Assume the computational domain is defined by  and  

 he Dirichlet boundary conditions are prescribed as follows: 

For the liquid phase  

 

    (11) 

 

For the solid phase ( ): 

 

    (12) 

 

Lateral -Boundary Conditions: 

Along the boundaries  and , the temperature fields are 

prescribed as: 

 

,   (13)              

,   (14) 

 

 

To fully specify the problem, we also enforce the continuity of temperature at the 

moving interface: 

  (15) 

 
where  is the melting temperature at which the phase change occurs. 

 

C. Benchmarking-testing Two-Dimensional Two-Phase Stefan Problem 

that is used in PINN model 

For benchamrking-testing these conditions is applied as an input condition, which 

further will satisfy loss functions and used to extract Exact, Predicted and absolute 

error for both phases of the problem. 

The benchmarking problem for the two-dimensional two- 

phase Stefan problem is defined as follows: 
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Computational Domain: 

 

Ω(t) = {(x, y) : 0 ≤ x ≤ 2.25, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1}, 

 

where the moving boundary is given by: 

S(y, t) = s0(y) + h(t),      (16) 

with 

s0(y) = 0.5y + 0.5, h(t) = t.      (17) 

 

Governing equations mentioned before in previous sections.  

Initial Conditions: 

u1(x, y, 0) = exp(−x + y) − 1, x > S(y, 0),     (19) 

u2(x, y, 0) = exp(−x + y) + 1, x < S(y, 0),    (20) 

S(y, 0) = 0.5y + 0.5.        (21) 

 

Boundary Conditions: 

● At x = 2.25 (liquid phase boundary): 

    (22) 

 

● At x = 0 (solid phase boundary): 

        (23) 

 

● At the moving interface x = S(y, t): 

     (24) 

 

where Tm is the melting temperature. 

Based on all equations, Exact Solutions for Benchmarking: 

 

    (25) 

 

    (26) 

 

        (27) 

 

IV. MATHEMATICAL FORMULATION IN THE PINN FRAMEWORK 

 

Physics-informed neural networks (PINNs) offer a robust framework for solving 

partial differential equations by embedding the underlying physical laws directly into 
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the network’s loss function. In this work, we use PINNs to solve the two-dimensional 

two-phase Stefan problem by simultaneously approximating: 

● The liquid phase temperature field , 

● The solid phase temperature field , 

● The moving interface  that separates the two phases.  

    

A. PINN Approximation 

In our PINN formulation, the unknown fields are represented by neural networks: 

●  approximates , 

●  approximates , 

●  approximates the moving interface . 

Here, , , and  are the trainable parameters. 

To enforce the governing equations, initial, and boundary conditions, we 

construct a total loss function: 

  

,     (28) 

With: 

    (29) 

    (30) 

   (31) 

 

The derivatives are computed via automatic differentiation using TensorFlow’s 

GradientTape). 

 

 
Fig. 3. Training loss 
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B. Neural Network Architecture and Training Details 
 

The PINN model is implemented with the following settings: 

● Learning Rate:  (adaptive via the Adam optimizer), 

● Number of Layers: 5 layers for each network, 

● Neurons per Layer: 100 neurons per hidden layer, 

● Activation Function: tanh, 

● Batch Size: 128 (for sampling collocation points, initial, and boundary data), 

● Loss Function: Mean squared error as described above. 

●  

C. Results and Discussion 

The training process was monitored by visualizing the convergence of the total 

loss function. Figure 3 shows the loss reduction over iterations, demonstrating 

effective optimization.  

After approximately 500 iterations, the loss stabilized at a low value, indicating 

that the PINN model accurately enforces the governing equations, initial conditions, 

and boundary conditions. 

The model was evaluated by predicting: 

● : the liquid temperature field, 

● : the solid temperature field, 

● : the moving interface. 

●  

 
 

Fig. 4. Moving boundary; exact, predicted, absolute error. 

 

These results validate the effectiveness and accuracy of the PINN model for 

solving the two-dimensional two-phase Stefan problem. The figures included in this 

section (Figures 4 and 5) are direct outputs of our 2p2p solving code. They represent: 

● The convergence behavior of the loss function during training, 

● The comparison between the exact and predicted moving boundary , 

● Similar comparisons for the temperature fields  and . 
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Fig. 5. Exact, predicted, and absolute error for the u1,u2 S(y, t) at t= 0.2; t=0.4; 

t=0.6. 

 

V. CONCLUSION AND FUTURE WORK 

 

In this work, we developed a novel physics-informed neural network (PINN) 

framework for solving the two-dimensional two-phase Stefan problem. Our approach 

embeds the governing physical laws—including the heat equations for both liquid 

and solid phases and the Stefan condition at the moving interface—directly into the 

loss function, allowing the neural network to learn a continuous and differentiable 

representation of the temperature fields  and , as well as the 

interface . 

A key contribution of our work is the extension of benchmark studies based on 

the classical one-dimensional Stefan problem (see ). By leveraging the simpler 1D 

case as a benchmark, we validated our method’s core ideas before extending them to 

the more challenging 2D2P scenario. Our numerical experiments demonstrate that 

our PINN model achieves relative errors on the order of  for both the 

temperature fields and the moving interface. These results confirm the ability of our 

method to capture the complex dynamics of phase change processes accurately and 

efficiently. 

Our PINN framework is implemented using state-of-the-art deep learning tools 

(TensorFlow) and employs automatic differentiation to compute the necessary 

derivatives in the loss function. The network architecture comprises 5 hidden layers 

with 100 neurons per layer and uses the hyperbolic tangent activation function. 

Training is carried out with an adaptive Adam optimizer (learning rate ) and 

a batch size of 128. The outputs from our 2D2P solver include convergence plots of 

the loss function, predicted temperature fields, and the evolution of the moving 

interface. Figures such as 4 and 5 illustrate the excellent agreement between the 

predicted solutions and the exact benchmark results. 

Despite these promising results, several challenges remain. In our current 

formulation, the physical parameters are assumed constant, and the boundary 

conditions are simplified. Future work will focus on extending our framework to 



Qazaq Journal of Young Scientist       Vol. 3, No. 4, April 2025 

 

 

253 

 

 

 

more heterogeneous materials and complex boundary conditions. In addition, we plan 

to: 

● Develop and integrate advanced adaptive sampling strategies to further reduce 

the computational cost. 

● Explore the incorporation of uncertainty quantification to assess the robustness 

of the PINN predictions under parameter variability. 

● Extend the current framework to three-dimensional two-phase Stefan 

problems. 

● Investigate the use of alternative network architectures and hybrid methods that 

combine PINNs with traditional numerical solvers.  
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ДВУМЕРНАЯ ДВУХФАЗНАЯ ЗАДАЧА СТЕФАНА С 

ИСПОЛЬЗОВАНИЕМ ФИЗИЧЕСКИ-ИНФОРМИРОВАННЫХ 

НЕЙРОСЕТЕЙ (PINNs) 

 

Майданова Сымбат 

 

Основываясь на недавних достижениях в области физически-

информированных нейросетей (PINNs) для двумерных задач Стефана, в данной 

статье представлен новый подход, который расширяет эти методы для 

решения более сложной двухфазной задачи Стефана. Задача Стефана 

моделирует явления фазовых переходов, такие как плавление и кристаллизация, 

где динамически движущаяся граница разделяет различные термические фазы. 

Традиционные численные методы (например, методы конечных разностей и 

конечных элементов) часто испытывают трудности с сложными 

геометриями и изменяющимися границами. В отличие от этого, наш подход на 

базе PINN непосредственно включает управляющие уравнения в частных 

производных (PDE), условие Стефана и соответствующие начальные и 

граничные условия в функцию потерь нейросети. Пересматривая и развивая 

предыдущие реализации PINN для однофазных двумерных задач Стефана, мы 

адаптируем и улучшаем методику, чтобы одновременно аппроксимировать 

температурные поля в жидкой и твердой фазах и точно захватывать 

движение интерфейса. Для обеспечения высокой разрешающей способности в 
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областях с крутыми градиентами применяются передовые стратегии 

выборки. Численные эксперименты демонстрируют быстрое сходимость и 

высокую точность, с метриками ошибки, которые хорошо сравниваются с 

классическими методами. 

 

Ключевые слова: проблемы фазовых переходов, проблемы с 

движущимися границами, физически-информированные нейросети (pinns), 

теплопередача, вычислительная физика, условие Стефана, оптимизация 

нейросетей, частные дифференциальные уравнения, численные методы, 

двухфазные системы. 

 

ЕКІМЕРЗІМДІ ЕКІФАЗАЛЫ СТЕФАН ЕСЕБ№Н  ФИЗИКАЛЫҚ-

АҚПАРАТТАНДЫРЫЛҒАН НЕЙРОЖЕЛІЛЕР (PINNs) АРҚЫЛЫ 

ШЕШУ 

 

Майданова Сымбат 

 

Бұл мақалада соңғы уақытта физикалық-ақпараттандырылған 

нейрожелітер (PINNs) арқылы екімерзімді Стефан есептерін шешуге 

бағытталған жаңа әдіс ұсынылады. Стефан есебі фазалық өзгерістерді 

моделдейді, мысалы, балқу және қату процестерін, мұнда динамикалық 

қозғалып отыратын шекара әртүрлі термиялық фазаларды бөледі. Дәстүрлі 

сандық әдістер (мысалы, шекті айырмашылықтар мен шекті элементтер 

әдістері) күрделі геометриялар мен өзгеретін шекаралармен жұмыс істеуде 

қиындықтарға тап болады. Ал біз ұсынған PINN негізіндегі әдіс тікелей 

басқарушы бөлшектердің теңдеулерін (PDE), Стефан шартын және сәйкес 

бастапқы және шекаралық шарттарды нейрожелінің жоғалту функциясына 

қосады. Бұрынғы PINN жүзеге асырылымдарын бірфазалы екімерзімді 

Стефан есептеріне қатысты қайта қарастырып, жетілдіре отырып, біз 

әдісті екі фазада да температуралық өрістерді бір уақытта жақындатуға 

және интерфейстің қозғалысын дәл анықтауға бейімдейміз. Қатты 

градиенттері бар аймақтарда жоғары шешім қабылдауды қамтамасыз ету 

үшін жетілдірілген таңдау стратегиялары қолданылады. Сандық 

эксперименттер жылдам жинақталуды және жоғары дәлдікті көрсетеді, 

қателік метрикалары классикалық әдістермен салыстырғанда жақсы 

нәтижелер береді. 

Кілт сөздер: фазалық өзгеріс мәселелері, қозғалмалы шекара мәселелері, 

физикалық-ақпараттандырылған нейрожелілер (pinns), жылу тасымалдау, 

есептеу физикасы, Стефан шарты, нейрожелі оптимизациясы, жартылай 

дифференциалды теңдеулер, сандық әдістер, екіфазалы жүйелер. 

 


