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Building on recent advances in Physics-Informed Neural Networks (PINNs) for
two-dimensional Stefan problems, this paper presents a novel framework that extends
these methods to address the more challenging two-phase Stefan problem. The Stefan
problem models phase-change phenomena—such as melting and solidification—
where a dynamically moving interface separates distinct thermal phases. Traditional
numerical methods (e.g., finite difference and finite element techniques) often
struggle with complex geometries and evolving boundaries. In contrast, our PINN-
based approach directly incorporates the governing partial differential equations
(PDEs), the Stefan condition, and the associated initial and boundary conditions into
the neural network’s loss function. By reviewing and building upon prior PINN
implementations for single-phase 2D Stefan problems, we adapt and enhance the
methodology to simultaneously approximate the temperature fields in both the liquid
and solid phases and to accurately capture the motion of the interface. Advanced
sampling strategies are employed to ensure high resolution in regions with steep
gradients. Numerical experiments demonstrate rapid convergence and high
accuracy, with error metrics that compare favorably to classical methods.
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informed neural networks (PINNs), Heat transfer, Computational physics, Stefan
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I. INTRODUCTION

In nature and technology, phase-change phenomenon is ubiquitous, from ice
formation and melting to metal solidification and crystal growth. The Stefan problem
models such processes, in which a sharp interface separates different thermal phases.
Conventionally, such problems are solved using finite difference and finite element
methods but their performance declines in complex, higher-dimensional geometries
because those typically require a mesh to be frequently updated and adaptively
refined in the vicinity of dynamically evolving interfaces.
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Recent developments of machine learning — especially the invention of Physics-
Informed Neural Networks (PINNs) — provide an exciting alternative. PINNs have
been previously implemented for two-dimensional single-phase Stefan problems,
where the governing partial differential equations (PDEs) and associated boundary
and initial conditions are directly embedded into the loss function of a deep neural
network. For example, Wang and Perdikaris [1] showcased the power of deep
learning methods to solve the free boundary and Stefan problems, while Li et al. and
to solve two-dimensional Stefan problem more efficiently, Yang et al. [2] proposed
an enhanced PINN framework with few-shot learning. These works form a strong
basis that demonstrate how PINNs can naturally cope with irregular domains and
moving boundaries in a manner not bound by the limitations of traditional
discretization methods.

Our work builds upon these advances and extends the methodology to the more
difficult two-phase Stefan problem. To this end, rather than performing single
thermal phase modeling, our framework aims to characterize the temperature
evolution both in liquid and solid phases simultaneously and to capture the moving
interface correctly. To do so, we devise a new PINN-based methodology consisting
of different neural network approximations for each phase combined with an adaptive
sampling approach, clustering training points at regions of high solution gradients. In
addition, we also adjust the loss function to account for the multiple physical
constraints of the two-phase systems.

The rest of this paper i1s organized as follows: A detailed mathematical
formulation of two-dimensional two-phase Stefan problem is given in Section II.
Section III describes our methodology of the PINN-based solution statement,
including details of network architecture, loss function design,and training
procedures. Section V offers a summary of findings and discusses future research

avenues.
II. LITERATURE REVIEW

A. Overview of Traditional Numerical Methods and some of the Neural
Network methods

The Stefan problem, which models phase-change phenomena (e.g., melting and
freezing), has a long history in the literature. Classical texts such as Alexiades and
Solomon [1] and Crank [2] laid the groundwork by formulating the mathematical
modeling of melting and freezing processes and developing numerical schemes based
on finite difference and finite element methods. Early numerical methods for the
Stefan problem are also discussed in Lagaris et al. [3].

More recently, Physics-Informed Neural Networks (PINNs) have emerged as a
powerful alternative for solving PDEs without traditional discretization. Raissi et al.
[4] introduced PINNs to solve forward and inverse problems involving nonlinear
PDEs, while Wang and Perdikaris [5] further investigated strategies to mitigate
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gradient pathologies in PINNs. Methods such as the deep Galerkin method proposed
by Sirignano and Spiliopoulos [6] and the fractional PINNs introduced by
Karniadakis et al. [7] have expanded the toolkit available for these types of problems.
In addition, Han and Jentzen [8] and Wan and Perdikaris [9] have applied PINNs to
highdimensional settings, and Sifan and Perdikaris [10] specifically targeted inverse
and direct Stefan problems. A comprehensive review of physics-informed machine
learning techniques is given in Karniadakis et al. [11].

In parallel, several deep learning approaches have been applied to solve PDEs via
operator learning and convolutional neural networks. Dong et al. [12] proposed an
operator learning framework for high-dimensional PDEs, while Lu et al. [13]
introduced DeepONet based on the universal approximation theorem of operators. Li
et al. [14] demonstrated the application of convolutional neural networks to heat
transfer problems. Almajid et al. [15] further developed sparse regression techniques
for physics-informed learning, enhancing the efficiency of data-driven PDE
discovery.

Other neural network architectures have also been explored. Kim, Lu, and
Karniadakis [16] employed attentionbased neural networks to address spatiotemporal
challenges, which is particularly useful for complex phase-change problems.
Reinforcement learning approaches for PDEs involving phase transitions have been
studied, while Kaur and Gupta [17] applied multi-agent reinforcement learning for
phase boundary modeling. Generative adversarial networks (GANs) have been used
for inverse heat transfer problems by Laga et al. [18].

In summary, while classical methods [1]-[3] provide a solid foundation for the
study of phase-change phenomena, recent advances in PINNs and deep learning [4]—
[16] along with reinforcement and generative approaches [18] and data-driven
discovery have broadened the scope of techniques available to tackle complex free-
boundary problems. Our work builds on these contributions by developing a PINN-
based framework to efficiently solve the two-dimensional two-phase Stefan problem,
integrating ideas from both classical numerical analysis and modern machine learning
methodologies.
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Fig. 1. Grid diagram illustrating spatial and temporal discretization in FDM.
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B.PINNs for PDEs and Extension to Two-Dimensional TwoPhase Stefan
Problems

Physics-Informed Neural Networks (PINNs) offer an attractive alternative to
traditional discretization-based methods by embedding the governing physical laws
directly into the network’s loss function. Instead of relying on fixed grids, PINNs
provide continuous and differentiable approximations to the solution across the entire
domain. This approach avoids the pitfalls of grid discretization and can more
naturally accommodate irregular domains and non-linear problems. In practice,
PINNSs solve PDEs by sampling collocation points from the domain and minimizing
the loss over these points. A visualization of the sampling process might include:

* A grid-like distribution of collocation points in a 2D domain.

* Highlighted boundary and interior points used during training.

TABLE L. PARAMETERS USED IN THE PINN MODEL

Table Column Head
Parameter .

Description Value
Learning Rate Optimizer learning rate 1 x10-3
Number of layers Depth of the neural network 5
Neurons per Layer Width of each hidden layer 50
Activation Activation function tahnk

While previous studies have primarily focused on one-dimensional problems as a
benchmark, the extension to two-dimensional two-phase Stefan problems introduces
new challenges. In two dimensions, the moving boundary becomes significantly more
complex, and the problem must account for the temperature fields in both the liquid
and solid phases.

This added complexity requires:

* Enhanced sampling strategies to capture steep gradients near the phase
boundary.

* Modified loss functions that effectively balance the competing physical
constraints of the two-phase system.

In our work, we build on the successes of PINNs in twodimensional benchmark
problems and extend the framework to address

the more challenging two-dimensional two-phase Stefan problem. This extension
not only demonstrates the scalability of the PINN approach but also contributes to
advancing the state-of-the-art in solving phase-change problems using deep learning.

C. Two-Dimensional Stefan Problem solved by PINN benchmarking

Two-dimensional Stefan problems have long served as a critical testbed for
developing and validating numerical methods for phase-change phenomena.
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Traditional numerical approaches, such as finite difference and finite element
methods, have been extensively applied to these problems. However, the intrinsic
challenges of capturing moving boundaries and handling irregular geometries often
limit their efficiency and accuracy.

Recent advances in deep learning have paved the way for alternative approaches
that can overcome these limitations. In particular, the framework developed by Wang
and Perdikaris [1] demonstrates the effectiveness of Physics-Informed Neural
Networks (PINNs) in solving two-dimensional free boundary and Stefan problems.
Their work shows how PINNs can incorporate the underlying physics—via the
governing partial differential equations (PDEs) and associated boundary conditions—
directly into the training process. This approach not only provides a mesh-free
solution method but also delivers robust performance in both direct and inverse
problem settings. Their framework successfully resolves the evolving interface in a
two-dimensional setting by training multiple neural networks to approximate the
latent solution and the unknown free boundary.

Building on these ideas, Li et al. [2] introduced an improved PINN framework
that integrates small sample learning to address two-dimensional Stefan problems.
Their strategy focuses on enhancing prediction accuracy in regions with steep
solution gradients by using adaptive sampling techniques and a modified loss
function. The inclusion of small sample learning enables the network to achieve high-
resolution approximations of the moving boundary even when limited training data
are available. This refinement is particularly significant in twodimensional scenarios,
where the complexity of the domain often leads to difficulties in accurately capturing
phase transitions. These studies not only underscore the use of PINN in solving such
problems, also provides conceptual groundwork that we are going to use in our
research

[II. TWO-DIMENSIONAL STEFAN PROBLEM OVERVIEW

A. Two-Dimensional Stefan Problems

The two-dimensional one-phase Stefan problem represents a critical class of
phase-change problems where heat transfer and moving boundaries in two spatial
dimensions are analyzed. In this section, we explore the mathematical formulation
and challenges associated with these problems, which set the stage for extending the
framework to two-phase scenarios.

The mathematical formulation of the two-dimensional onephase Stefan problem
involves solving the heat equation in a domain €(t) subject to initial and boundary
conditions and a moving phase-change boundary S(y, t):

du(x,yt) _ (3 Zu(xyt) 02 u-(x,y,t))
ac ¢ a2 ay? (1)

where:

246



Qazaq Journal of Young Scientist Vol. 3, No. 4, April 2025

* u(x, y, t) is the temperature at position (X, y) and time t,
* o is the thermal diffusivity.

Reference Configuration Deformed Configuration

Dirichlet

Liquid Phase 02, Liquid Phase sa,[r;

|

Solid Phase {1, \Jrh-d Phase (8(t) [

Fig. 2. Illustration of the Stefan problem domain with boundary conditions.

The phase-change boundary S(y,t) satisfies the Stefan condition:

as(y,t) 1 du
o= (K gy s 2)

where L is the latent heat of phase transition and « is the thermal conductivity. For
completeness, the heat equation and boundary conditions can also be stated as:

3
a—i: = aV?u (3)

u(x,y,t) =0 textonthedomainboundaries (4)

B. Governing Equations for the 2D2P Stefan Problem that is applied in model
formulation for Neural Network

The governing equations for the 2D2P Stefan problem are formulated as follows:
Heat Equations:

duy 2%u, 9%u,
o 1(ax2 _ayz)’ x> S(yt),t>0, (5)
duy 2%u, 3%u,
e =@ (G2t 5e), x<Sk0,t>0, (6)

where a@; and a, denote the thermal diffusivities for the liquid and solid phases,
respectively.
Initial Conditions:
ul(x,y,[]} :fl(x!y)! (7)
Uy (x,y,0) = fo(x,y), (8)
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S(y,0) =S,(). 9)

Stefan Condition (at the interface S(y, t)):

as(v,t 1 du du
20— (152 = 15 s (10)

t>=20
where L is the latent heat and x represents the thermal conductivity (assumed equal
for both phases).

Boundary Conditions (Dirichlet):

Assume the computational domain is defined by x € [X,,; Xmar] and
Y € [Vinin» Ymax) he Dirichlet boundary conditions are prescribed as follows:

For the liquid phase x > S(y,t)

u(x,y,t) = g1(x,y,t) textonlp, (11)
For the solid phase (x < S(y,t)):
Uy (x,y,t) = go(x,y,t) textonly, (12)

Lateral y-Boundary Conditions:
Along the boundaries y = y,,;,, and ¥ = V4., the temperature fields are
prescribed as:

ul(x: Y t) - gl,y(x! t): (13)
textforx = S(y, t),u,(x,y, t) = gg,y(x, t), (14)
textforx < S(y,t).

To fully specify the problem, we also enforce the continuity of temperature at the
moving interface:
ul(S(yrt):yrt) ZHZ(S(y:t)ryrt) :Tmr (15)
t >0,
where T, 1s the melting temperature at which the phase change occurs.

C. Benchmarking-testing Two-Dimensional Two-Phase Stefan Problem
that is used in PINN model
For benchamrking-testing these conditions is applied as an input condition, which
further will satisfy loss functions and used to extract Exact, Predicted and absolute
error for both phases of the problem.
The benchmarking problem for the two-dimensional two-
phase Stefan problem is defined as follows:
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Computational Domain:
Q) ={(X,y):0<x<2250<y<1,0<t<1},

where the moving boundary is given by:
S(y, t) = s0(y) + h(v),

s0(y) = 0.5y + 0.5, h(t) = t.

with

Governing  equations  mentioned before in  previous
Initial Conditions:
ul(x, Y, 0)= exp(—x + Y) - 1,x> S(ya 0),
u2(x,y, 0) =exp(—x +y) + 1, x <S(y, 0),
S(y, 0) =0.5y +0.5.

Boundary Conditions:
o At x =2.25 (liquid phase boundary):
u;(2.25,y,t) = exp (—2.25 +y —i—g) -1,

e At x =0 (solid phase boundary):
u,(0,y,t) = exp (1 + E) + 1,

e At the moving interface x = S(y, t):
wu (S(y, t),y,t) = uy, (S(y,t),y,t) = Tm,

where Tm is the melting temperature.
Based on all equations, Exact Solutions for Benchmarking:

ul(x, y,t) Zexp(—x +y + %)— 1,
u2(x,y,t) =exp(—x +y + E)"— 1,

S(y,t) =05y + 0.5 + ¢,

(16)
(17)

sections.

(19)
(20)
(21)

(22)

(23)

(24)

(25)

(26)
(27)

IV. MATHEMATICAL FORMULATION IN THE PINN FRAMEWORK

Physics-informed neural networks (PINNSs) offer a robust framework for solving
partial differential equations by embedding the underlying physical laws directly into
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the network’s loss function. In this work, we use PINNs to solve the two-dimensional
two-phase Stefan problem by simultaneously approximating:

e The liquid phase temperature field u; (x, y, t),

® The solid phase temperature field u, (x, y, t),

e The moving interface s(y, t) that separates the two phases.

A.PINN Approximation

In our PINN formulation, the unknown fields are represented by neural networks:

® N, (x,y,t;mathbf 6;) approximates uy (x, y, t),

e N, (x,y,t;mathbf 6,) approximates u,(x,y,t),

e N_(y,t; mathbf 6,) approximates the moving interface s(y, t).

Here, 0,, 0,, and 8 are the trainable parameters.

To enforce the governing equations, initial, and boundary conditions, we
construct a total loss function:

Liotar = Lur + Luz + Lstefan T L%a (28)
With: ,

= X (e (5 ) 2

ot (GeoaCrete). @

Cotopon = S (0 4 2 (1 Bn - M)}, a1

The derivatives are computed via automatic differentiation using TensorFlow’s
GradientTape).

Training Loss History

10° 4

10714

Loss

10-2 4

T T T T T T
0 100 200 300 400 500
lteration

Fig. 3. Training loss
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B.Neural Network Architecture and Training Details

The PINN model is implemented with the following settings:

e Learning Rate: 1 X 1073 (adaptive via the Adam optimizer),

e Number of Layers: 5 layers for each network,

e Neurons per Layer: 100 neurons per hidden layer,

e Activation Function: tanh,

e Batch Size: 128 (for sampling collocation points, initial, and boundary data),

e [oss Function: Mean squared error as described above.

([

C. Results and Discussion

The training process was monitored by visualizing the convergence of the total
loss function. Figure 3 shows the loss reduction over iterations, demonstrating
effective optimization.

After approximately 500 iterations, the loss stabilized at a low value, indicating
that the PINN model accurately enforces the governing equations, initial conditions,
and boundary conditions.

The model was evaluated by predicting:

® u, (x,y,t): the liquid temperature field,

® u,(x,y,t): the solid temperature field,

e s(y,t): the moving interface.

[ ]

Exact s(y, t} Predicted s(y, t) Absolute Error

Fig. 4. Moving boundary; exact, predicted, absolute error.

These results validate the effectiveness and accuracy of the PINN model for
solving the two-dimensional two-phase Stefan problem. The figures included in this
section (Figures 4 and 5) are direct outputs of our 2p2p solving code. They represent:

e The convergence behavior of the loss function during training,

e The comparison between the exact and predicted moving boundary s(y, t),

e Similar comparisons for the temperature fields u; and u,.
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Comparisan of Exact and Predicted Solutions with Errors
uzatt=02

Fig. 5. Exact, predicted, and absolute error for the ul,u2 S(y, t) at t= 0.2; t=0.4;
t=0.6.

V. CONCLUSION AND FUTURE WORK

In this work, we developed a novel physics-informed neural network (PINN)
framework for solving the two-dimensional two-phase Stefan problem. Our approach
embeds the governing physical laws—including the heat equations for both liquid
and solid phases and the Stefan condition at the moving interface—directly into the
loss function, allowing the neural network to learn a continuous and differentiable
representation of the temperature fields u;(x,y,t) and u,(x,y,t), as well as the
interface s(y, t).

A key contribution of our work is the extension of benchmark studies based on
the classical one-dimensional Stefan problem (see ). By leveraging the simpler 1D
case as a benchmark, we validated our method’s core ideas before extending them to
the more challenging 2D2P scenario. Our numerical experiments demonstrate that
our PINN model achieves relative errors on the order of 107° for both the
temperature fields and the moving interface. These results confirm the ability of our
method to capture the complex dynamics of phase change processes accurately and
efficiently.

Our PINN framework is implemented using state-of-the-art deep learning tools
(TensorFlow) and employs automatic differentiation to compute the necessary
derivatives in the loss function. The network architecture comprises 5 hidden layers
with 100 neurons per layer and uses the hyperbolic tangent activation function.
Training is carried out with an adaptive Adam optimizer (learning rate 1 X 107%) and
a batch size of 128. The outputs from our 2D2P solver include convergence plots of
the loss function, predicted temperature fields, and the evolution of the moving
interface. Figures such as 4 and 5 illustrate the excellent agreement between the
predicted solutions and the exact benchmark results.

Despite these promising results, several challenges remain. In our current
formulation, the physical parameters are assumed constant, and the boundary
conditions are simplified. Future work will focus on extending our framework to
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more heterogeneous materials and complex boundary conditions. In addition, we plan
to:

e Develop and integrate advanced adaptive sampling strategies to further reduce
the computational cost.

e Explore the incorporation of uncertainty quantification to assess the robustness
of the PINN predictions under parameter variability.

e Extend the current framework to three-dimensional two-phase Stefan
problems.

e Investigate the use of alternative network architectures and hybrid methods that
combine PINNs with traditional numerical solvers.
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JIBYMEPHAS IBYX®A3HAS 3AJJAYA CTE®AHA C
HUCHOJIb30BAHUEM ®U3NYECKU-UHO®OPMUPOBAHHBIX
HEHUPOCETEMH (PINNs)

Mainioanoea Coimoam

OcHosblgascy Ha  HeOA8HUX  OOCMUMNCEHUAX 8  obaacmu  QuuyecKu-
ungopmuposarnnvix netipocemeti (PINNs) ons 0symepnvix 3a0au Cmeghana, 6 0anHOl
cmamve Npeodcmasier HOBblll No0X00, KOMOPbLIL pacuiupsem >mu Memoovl OJis
pewenusi Oonee caodcHou 08yxgasnou 3adauu Cmegana. 3adaua Cmeghana
Mooenupyem si8lieHust hazosvlx nepexo0os, maxue Kaxk niasieHue U KpUCmaiiu3ayus,
20e OUHAMUYECKU OBUNCYULASC 2PAHUYA pa3oeisiem pa3iudtble mepmudeckue hasol.
Tpaouyuonnvie uucienHvie mMemoovl (Hanpumep, Memoovl KOHEUHbIX pa3HOCmel U
KOHEYHbIX  JJIeMEHMOB8)  HaCmo  UCHBLIMbIBAION — MPYOHOCMU € CIONCHBIMU
2eoMempusIMU U UBMEHSIOWUMUCS epanuyamu. B omauvue om smozo, naut nooxoo Ha
baze PINN Henocpeocmeenno 6Kkaouaem YNpasisiowue YpAaeHeHUs 6 HACHHbIX
npouszeoounvix (PDE), ycnosue Cmegana u coomeemcmeyowue HAuaibHble U
2paHudHble YClosust 6 QyHKyuio nomepsv Hevpocemu. llepecmampueas u pazeusast
npeovioywue peanusayuu PINN ona oonoghasnvix 0symeprvix 3a0au Cmeghana, mol
aoanmupyem u yuyyuiaem Memoouxy, umooOvl 0OHOBPEMEHHO aNNpPOKCUMUPOBAMD
memnepamypuvle NOJL 8 JHCUOKOU U mBepOoou (hazax u MOYHO 3AX6ambleamy
ogudiceHue unmepgetica. /s obecneuenus: blCOKOU paspeuiaroujelti ChoCOOHoCmu 8
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obracmsax ¢ KpymolMu epaoueHmamiy NpuUMeHsIOmcs nepeoogvle cmpameuu
8bibopru. Hucnennvie sKcnepuMenmvl 0EeMOHCMPUPYIOM ObICMpoe CXO00UMOCMb U
8bICOKVIO MOYHOCMb, C MEMPUKAMU OWUOKY, KOMOpble XOPOULO CPABHUBAIOMCSA C
K1accuyecKumMu Memooamu.

KiroueBble ciaoBa: 1npoOiembl  (a3oBbIX  MEPEXONOB, MpOOIEMBI €
ABMOKYIIUMHUCS TpaHUIaMmu, (usnuecku-uHGopMHUpOBaHHbIE HeipoceTn (pinns),
Teruionepeaavya, BblUMCIUTENbHAs (usuka, ycnoBue Credana, onTuMHU3AIMS
HelipoceTell, uvacTHble auddepeHlnaIbHble ypaBHEHUS, YHUCICHHBIE METOIbI,
ABYyX(a3HbIE CHCTEMBI.

EKIMEP3IM/II EKI®A3AJIbI CTE@AH ECEbNeH ®U3HKAJIbIK-
AKITAPATTAHABIPBIJIFAH HEUPOZKEJIIJIEP (PINNs) APKbLJIbI
HNENTY

Maiioanosa Ceimoam

Byn  makanada  conewi  yakeimma — QUIUKATLIK-AKNADAMMAHOLIPLLIZAH
nevpoocenimep (PINNs) apkviner  eximep3imoi Cmeghan ecenmepin  weutyze
baseimmanzan oJicana a0ic ycoinwviiaovl. Cmeghan ecebi azanviy o32epicmepoi
MoO0enoeudi, Mblcanvl, OanKy odHcoHe Kamy npoyecmepin, MYHOAd OUHAMUKATLIK
KO032a1blN OMbIPAMbBIH UleKapa apmypii mepmusivlk gazanapovt 6enedi. [Jocmypni
Canovik a0icmep (Mblcanbl, WeKmi AUbPMAWUBLILIKIMAD MeH WeKmi d1eMeHmmep
adicmepi) Kypoelni 2eoMempusiap MeH o32epemil WeKapailapmMer JHCYMblc icmeyoe
KublHObIKmapea man 6oaaovl. An 6i3 yceinean PINN mnecizinoezi adic mikenei
backapywnl 6enuwexmepoiy meyoeynepin (PDE), Cmechan wapmoin dicone caiikec
bacmankul JHcoHe WeKapaiblk Wapmmapobl HEUpPOHCENIHIY HCOANMY DYHKYUACLIHA
Kocaovl. bBypwinest PINN orcyzece acvipwiivimoapuln  Oipghazanvl  eximep3imoi
Cmegan ecenmepine KamviCmvl Kauma Kapacmulpbln, diceminodipe omwvlpvin, 013
a0icmi exi ¢hazada oa memnepamypanvik epicmepoi OIp YaKblmma HcAKbIHOAMYed
JicoHe  uumepghelicmiy  KO32aublCblH 0271 aublkmayea Oetlimoetimiz. Kammeol
epaduenmmepi 6ap aumaxmapoa Hcoeapvl wlewim Kaowlioayobl KAMmMAamacsl3 emy
ywin  ocemindipineen  mawoay — cmpameausiapvl  Koaodauwvliaovl.  Canowlk
IKCNEPUMEHMMED AHCLIIOAM HCUHAKMATYObL JHCIHE HCORAPbL 0N0IKMI Kepcemeoi,
Kamenik ~Mempuxkaiapvl KIACCUKANLIK —20ICIMEePMeH  CANbICMbIPRAHOA — HCAKCHI
Hamucenep bepeoi.

Kint ce3nep: dazanbik e3repic Mocenenepl, Ko3raaMaibl IIeKapa Maceienepi,
(bu3UKanbIK-aKapaTTaHABIPbUIFAaH  Heipoxeniiep (pinns), >KbULy TachIMalijay,
ecentey ¢usukacel, CredaH mapThl, HEUPOXKEIl ONTUMHU3AIMACKHI, >KAPThLIAN
muddepeHnmanapl TEHACYIEP, CAHBIK 9AICTED, eKidaszalbl Kyhenep.
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