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In today's world, where different devices collect big data on a daily basis, it is
important to understand which indicators are the norm and which indicators are
unusual. It is the detection of anomalies in time series that is one of the important
tasks in many fields, such as manufacturing, finance and cybersecurity. This study
will be conducted using SKAB datasets, which is specially designed by developers to
test models. Datasets contain sensor readings (pressure, temperature, flow rate, etc.).
In this work, models such as LSTM Autoencoder, Isolation Forest, and Hotelling's T2
method are used. As a result of the comparative analysis, it was found that the LSTM
Autoencoder performed better than the other models with optimal resullts.
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Introduction

Anomaly detection in time series plays a key role in areas such as finance,
healthcare, cybersecurity, and industrial monitoring. A time series is a sequence of
observations recorded over time that can exhibit various patterns, including trends,
seasonality, and cyclical fluctuations. Anomalies in such data represent deviations
from expected behavior and may indicate important events, system failures,
fraudulent activities, or security threats [1,2]. Their identification is crucial to ensure
the reliability of systems, improve process efficiency, and prevent financial or
operational losses. Anomalies in time series can be classified into three main types:
point-based, contextual, and collective. Point anomalies are individual observations
that differ significantly from the rest of the sample, for example, a sharp spike in
network traffic that may indicate a cyberattack. Contextual anomalies look unusual
only in certain conditions, for example, a sharp increase in temperature in winter.
Collective anomalies are characterized [3,4] by abnormal behavior of a group of data
points, for example, an unexpected change in customer preferences. The process of
detecting anomalies in time series faces a number of difficulties. First, the high
variability of the data makes it difficult to distinguish between normal fluctuations
and true anomalies. Secondly, trends and seasonal effects can hide deviations,
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requiring careful data preprocessing. Third, anomalies are rare, which leads to
unbalanced datasets and complicates model training and validation. Various
approaches are used to identify anomalies, from statistical methods to machine
learning and deep learning algorithms. Traditional statistical methods such as moving
averages, autoregressive models, and control charts are highly interpretable, but they
may not be able to handle complex data dependencies. Machine learning methods,
including clustering, isolation forests, and support vectors, provide greater flexibility.
Deep learning, represented by recurrent neural networks (RNNs), long-term short-
term memory (LSTM) networks, and autoencoders, demonstrates high efficiency in
detecting time dependencies and complex anomalies.

This study aims to explore and apply advanced methods for detecting anomalies
in time series, with a particular focus on the SKAB dataset. In particular, the use of
T2-Hotelling statistics will improve the accuracy of anomaly identification and
improve monitoring of industrial systems.

Literature Review

This study [4] highlight that the rapid expansion of the Internet of Things (IoT)
and the increasing use of sensors in industrial settings have led to the generation of
vast amounts of complex data over time, known as multivariate time series data. This
type of data provides a more comprehensive view by integrating information from
multiple sensors. However, managing and preparing this data for analysis is
challenging. Each sensor measures different attributes, operates at varying
frequencies, and may have dependencies with other sensors, making the
preprocessing phase time-consuming and requiring specialized domain knowledge.
Time series anomaly detection plays a vital role in identifying unusual patterns in
sequential data, making it valuable in various fields. In finance, for instance, it can
detect fraudulent transactions, while in healthcare, it helps identify irregularities in
vital signs. Traditional methods often struggle with the dynamic nature of time series
data, but anomaly detection techniques can adapt more effectively. Additionally,
these methods are efficient since they do not necessarily require labeled data for
every anomaly.

Currently, extensive research is being conducted on time series anomaly
detection [5], with different approaches tailored to specific domains. In this research
[6], abnormal changes in GDP components over time were analyzed, while unusual
weather patterns were identified based on wave heights across the four seas [7].
Despite the significant research in this field, there is still no universally accepted
solution for detecting anomalies in time series data. By identifying anomalies, this
technology enhances decision-making, helps prevent potential issues, and reduces
costs. Ultimately, the ability to detect anomalies in time series data is crucial for
extracting valuable insights from the vast and continuously growing datasets
generated today.
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This paper [8] examines the application of Temporal Convolutional Networks
(TCNs) for detecting anomalies in multivariate time-series data. TCNs, known for
their ability to capture long-range dependencies, are trained to predict future values,
with anomalies identified based on prediction errors modeled using a multivariate
Gaussian distribution. The model employs causal and dilated convolutions to ensure
predictions rely only on past data while effectively capturing temporal dependencies.
Residual connections enhance training stability, and multi-scale feature maps
improve pattern recognition. The framework is tested on three real-world datasets:
Electrocardiograms (ECG), space shuttle telemetry, and 2-D gesture data. Results
indicate that TCNs with multi-scale features outperform standard TCNs in precision
and F-score, demonstrating their effectiveness in identifying anomalies across diverse
time-series patterns. This approach enhances anomaly detection in complex data,
making it applicable to various real-world scenarios.

This article [9] presents TadGAN, an unsupervised anomaly detection method
designed for time-series data using Generative Adversarial Networks (GANS).
TadGAN addresses key challenges in anomaly detection, including the lack of
labeled data, vague anomaly definitions, and complex temporal dependencies. The
model utilizes LSTM-based Generators and Critics, incorporating cycle consistency
loss to enhance time-series reconstruction. Training involves adversarial learning
with Wasserstein loss and gradient penalty for stability. Anomaly scores are
computed by combining reconstruction errors with Critic outputs, exploring
techniques such as dynamic time warping. TadGAN is evaluated against eight
baseline methods across 11 datasets from NASA, Yahoo, Numenta, Amazon, and
Twitter, consistently achieving the highest average F1 score. The model is
particularly effective in detecting collective anomalies and handling diverse anomaly
types, demonstrating superior performance and generalizability in real-world time-
series anomaly detection.

This research [10] present WANEH (Wavelets, Neural Networks, and Hilbert
Transform), a deep learning-based anomaly detection algorithm for time-series data.
This method is highly versatile, with applications in transportation, structural health
monitoring, and earthquake prediction. WANEH learns normal system behavior
without requiring anomalous training data, enhancing its adaptability across domains.
It employs wavelet analysis for multi-resolution signal denoising and reconstruction
while leveraging deep neural networks to capture both short- and long-term
dependencies. Anomalies are identified through hierarchical analysis of residual
signals using probabilistic ROC methods. Successfully applied to seismic electric
signals for earthquake forecasting and smartphone data for road defect detection,
WANEH demonstrates strong transferability with minimal adjustments. The study
concludes that WANEH is a robust, efficient tool for real-time anomaly detection,
significantly advancing expert systems in various fields.
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This study is aimed at studying existing models for detecting anomalies in time
series and their comparative analysis. The paper discusses various methods, including
statistical approaches, machine learning, and deep neural networks. To evaluate the
effectiveness and accuracy of the models, the SKAB dataset is used, which contains
data on industrial equipment. The analysis 1s based on quality metrics such as F1
score and other metrics, which allows you to determine the most effective algorithms.
The results of the study will help identify the strengths and weaknesses of various
approaches.

Methods

Dataset

The SKAB dataset (Skoltech Anomaly Benchmark) is designed for detecting
anomalies in data collected from industrial equipment. It consists of time-series data
from sensors monitoring a hydraulic system, measuring parameters such as pressure,
temperature, and fluid flow. The dataset includes both normal operating conditions
and various anomalies caused by malfunctions or deviations in system performance.
SKAB serves as a benchmark for testing and comparing anomaly detection methods,
enabling the evaluation of their accuracy, adaptability, and generalization
capabilities. With its structured format and labeled anomalies, this dataset is a
valuable resource for developing and training machine learning and deep learning
models aimed at industrial monitoring and fault detection.

datatime AccelerometsrIRMS  Accelerometer2RMS  Current Pressure Temperature Thermocougle vohage e or ingeoo
B 0.039615 0871339 0054711 75.4055 25,8338 244.05099990008088 320 o 00
2020 10:34 0.026894999999999958 0.0387587 130128 0054711 75,5045 25,8408 7 20 0o 0o
10:3¢ 0.026807029959998057 0.0385207 sues.45 0.18263800000000003 75,6607 35,8227 12,9986 0o 00
o 1034 0.0268166 0.038630300000000006 1.36495 0054711 75.575 5.8262 12.9986 00 0o
09.03.2020 10:3¢ 40 1 Dosant 75,4351 25,8382 32,0015 00 00
00600000002 0.0390794000000000) 1 0.38263300000000003 75,5475 25,8164 320 00 00
00000000002 0,0391756990999999 5 0054711 75.562 25,871 32,9986 00 00
0.038891300000000004 5 0.38263800000000003  75.5554 25,8319 32.0015 00 00
00000000003 0.0383421 99999999999 0054711 75.6128 25,8254 320 00 00
00000000004 0.039701 L1e015 0054711 75,5508 25,8136 238.67090999900098 32,9986 00 00
0.0393903 0717334 0054711 25,8173 25.102 32,0015 0 00
4654999999509 0.036479 0.706354 0054711 25,8181 222423 320 00 00
518 0.0392095 0722032 0054711 25,823 248,752 20 00 00
09.03.2020 10:34 0.026866200000000002 0.0385024 L0224 -0.273215993999 2 258102 231104 32,9986 0o 0o
09.03.2020 10:34 0.026950799999995097 0.03841 o307 0.3526380000000 o 25,8138 214.55599900005008 32,0015 00 00
1034 0.0266082 0.03915619898: £172020000000001  -0.27321593999 258139 2a0.085 20 0o 0o
10:3¢ 0027126 00397353000 5854779599900009  0.1826380000000 1 358121 220.19799980008088 320 0o 00
1034 0.026726 0.03876459898: 0.38263800000¢ 1873 25,8176 229.05%00000000003 320 00 0o
0.18263300000000003 755356 25,8072 231609 20 00 00
0054711 75,7014 3582 213.68099999998958  32.9985 00 00
999909 0054711 75.6438 25,814 223567 320015 00 00
0054711 75.7002 25.8196 22057 32.9986 00 00
0054711 75.6795 25,8162 21982 32,0015 00 00
3 625t o 0054711 157262 25,8182 2866 320 00 00
09.03.2020 10:34 0.0271855 0.041388 0.7662800999999509  0,054711 75,6208 258182 24274 320 00 00

Fig.1. SKAB Dataset

SKAB consists of 35 files, each dataset includes the following columns: datetime,
AccelerometerRMS,  Accelerometer2ZRMS, Current, Pressure, Temperature,
Thermocouple, Voltage, RateRMS, anomaly, and changepoint

Model Training and Evaluation

In this study, three anomaly detection methods were evaluated: Hotelling’s T2,
LSTM Autoencoder, and Isolation Forest. Each of these models operates based on
different principles and was assessed using key performance metrics, including F1
Score, False Alarm Rate (FAR), Missing Alarm Rate (MAR), and the NAB Score
under different settings (Standard, Low False Positives, Low False Negatives).
Hotelling’s T? is a multivariate statistical approach that identifies anomalies by
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measuring the Mahalanobis distance of observations from the dataset's mean vector.
The method calculates a T? statistic for each instance, and anomalies are flagged
based on a predefined p-value threshold (e.g., 0.99, 0.999). Additionally, Principal
Component Analysis (PCA) can be applied to reduce dimensionality and focus on the
most informative features. The model's performance was measured by its ability to
balance anomaly detection accuracy while minimizing false alarms. The LSTM
Autoencoder is a deep learning model designed for sequential anomaly detection. It
consists of an encoder-decoder structure, where LSTM layers learn to compress the
input sequence into a latent representation and then reconstruct it. The difference
between the input and the reconstructed output, known as the reconstruction error,
serves as the anomaly score. The model was trained using the Adam optimizer and a
Mean Absolute Error (MAE) loss function, with Early Stopping implemented to
prevent overfitting. Hyperparameters such as batch size, number of time steps
(N_STEPS), and validation split were varied to analyze their impact on detection
performance.

Finally, the Isolation Forest algorithm was examined as a tree-based ensemble
method for anomaly detection. It isolates data points through recursive random
partitioning, with anomalies typically being isolated faster than normal instances. The
contamination parameter was adjusted to control the proportion of expected
anomalies in the dataset, and different numbers of estimators were tested. The
model's effectiveness was assessed based on its ability to achieve a high F1 Score
while maintaining an optimal balance between false and missing alarms.

Each model’s performance was evaluated using F1 Score as the primary metric,
complemented by False Alarm Rate (FAR) and Missing Alarm Rate (MAR) to
quantify misclassifications. Additionally, the NAB Score was used to provide a
standardized comparison of model performance under different sensitivity settings.
The results obtained from each approach highlight the trade-offs between detecting
anomalies accurately and minimizing false detections.

Result

This study investigates anomaly detection in time series data using three models:
Hotelling’s T2, LSTM Autoencoder, and Isolation Forest. Performance is assessed
using F1 Score, False Alarm Rate, and Missing Alarm Rate.

Isolation Forest

The Isolation Forest model with different contamination values showed varying
results. With contamination=0.02, the model achieved the lowest False Alarm Rate
(20.81%), but at the cost of a high Missing Alarm Rate (61.47%), indicating it missed
many anomalies. Increasing contamination to 0.05 balanced detection rates, leading
to an F1 Score of 0.63. Figure 2 provides a detailed performance breakdown.

Hotelling’s T?

The Hotelling’s T> method was tested with and without PCA-based
dimensionality reduction. The PCA variant (explained variance = 0.9, p value =
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0.99) achieved a slightly better performance than the standard approach, reducing the
False Alarm Rate from 26.42% to 23.3% while maintaining a similar Missing Alarm
Rate. However, overall F1 scores remained lower than the best-performing models.
Figure 3 illustrates the comparative performance of these configurations.

Model Parameters F1 Other metrics
Isolation n_jobs=-1, 0.7 | False Alarm Rate 45.21 %
Forest contamination=0.1 Missing Alarm Rate 25.1 %
NAB:
Standard - 3.92
LowFP - -0.49
LowFN - 6.26
Isolation n_jobs=-1, 0.49 | False Alarm Rate 20.81 %
Forest contamination=0.02 Missing Alarm Rate 61.47 %

Standard - 20.89
LowFP - 13.17
LowFN - 26.17

Isolation n jobs=-1, 0.63 | False Alarm Rate 32.28 %
Forest contamination=0.05 Missing Alarm Rate 40.91 %
n_estimators=100

Standard - 12.45
LowFP - 7.22
LowFN - 15.85

Fig.2. Performance metrics of Isolation Forest models
with different contamination values

Hotelling’s | scaling=True, 0.56 | False Alarm Rate 26.42 %
T2 using pca=False Missing Alarm Rate 52.15 %
explained variance=0.85,
p_value=0.999 Standard - 12.81
LowFP - 4.52
LowFN - 17.13
Hotelling’s | scaling=True, 0.58 | False Alarm Rate 23.3 %
T2 using pca=True, Missing Alarm Rate 50.77 %
explained variance=0.9,
p value=0.99 Standard - 11.94
LowFP - -3.09

LowFN - 18.12

Fig.3 Performance comparison of Hotelling’s T> with and without PCA.

LSTM Autoencoder

The LSTM Autoencoder with BATCH_SIZE=64 achieved the lowest Missing
Alarm Rate (30.84%), reducing undetected anomalies. However, this came with a
higher False Alarm Rate (39.42%). The best balance among the LSTM configurations
was achieved with BATCH SIZE=32 and N_STEPS=10, yielding an F1 Score of
0.67. Figure 4 compares the performance of different LSTM configurations.
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LSTM EPOCHS = 100 0.67 | False Alarm Rate 33.33 %
Autoencoder | BATCH SIZE =32 Missing Alarm Rate 34.86 %
VAL SPLIT=0.1
N_STEPS =10 Standard - 20.62
LowFP - 15.77
LowFN - 23.64
LSTM EPOCHS =100 0.62 | False Alarm Rate 31.79 %
Autoencoder | BATCH SIZE = 16 Missing Alarm Rate 43.51 %
VAL SPLIT=0.1
N STEPS =5 Standard - 19.07
LowFP - 10.59
LowFN - 2443
LSTM EPOCHS = 100 0.68 | False Alarm Rate 39.42 %
Autoencoder | BATCH SIZE = 64 Missing Alarm Rate 30.84 %
VAL SPLIT=0.2
N STEPS =10 Standard - 16.54
LowFP - 12.14
LowFN - 19.36

. 4, April 2025

Fig.4. Performance metrics of LSTM Autoencoder models with different
batch sizes and sequence lengths.

The anomaly detection methodology has some limitations. The dataset may
contain imbalances in certain features, affecting the overall detection performance.
Additionally, parameter sensitivity in models like Isolation Forest and LSTM
Autoencoder affects anomaly detection results, requiring fine-tuning for different
datasets. The choice of window size (N_STEPS) in LSTM models significantly
impacts model accuracy, as shorter sequences may miss long-term dependencies.
Furthermore, real-world time series data often contains missing values and noise,
which can impact anomaly detection effectiveness.

Conclusion

This study explores anomaly detection in time series data using three distinct
models: Hotelling’s T?, LSTM Autoencoder, and Isolation Forest. Various
configurations of these models were tested to evaluate their effectiveness in
identifying anomalies while minimizing false and missing alarms. The results
demonstrated that the Isolation Forest model with a contamination level of 0.1
achieved the highest F1 Score (0.70) but at the cost of a high False Alarm Rate
(45.21%). In contrast, the same model with a contamination level of 0.02
significantly reduced false alarms (20.81%) but suffered from a high Missing Alarm
Rate (61.47%), leading to missed detections. The LSTM Autoencoder models
provided a more balanced performance, with the batch size of 64 achieving the
lowest Missing Alarm Rate (30.84%), though with a slightly higher False Alarm Rate
(39.42%). Among different configurations, the LSTM Autoencoder with a batch size
of 32 and N_STEPS of 10 offered the best balance between detection accuracy and
alarm rates (F1 Score: 0.67, FAR: 33.33%, MAR: 34.86%). Hotelling’s T? performed
better with PCA, reducing its False Alarm Rate from 26.42% to 23.3%, although the
improvement was relatively small.
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These findings highlight the trade-offs in anomaly detection methods, with deep
learning models offering better adaptability to time series data, while statistical and
tree-based methods provide interpretable and computationally efficient alternatives.
Future research could explore hybrid approaches that combine these techniques to
enhance anomaly detection performance.
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MOJIEJIX U METO/Ibl OBHAPYKEHUSI AHOMAJINI BPEMEHHbBIX
PAJIOB C UCHOJb30BAHUEM HEHPOHHBIX CETEM

Anu Kyoan
Hay4nblii pykoBoauTensb: benomunkas C.

B cospemennom mupe, 20e paznuunvle ycmpoucmea exirceOHe8HO codupaom
bonvuiue 00beMbl OAHHBLIX, BANCHO HOHUMAMb, KAKUe NOKA3AmMenu SA61A0mcs
HOPMAIbHLIMU, A KaKUe - OMKIOHAouUMUcsa om Hopmol. OOHapyicenue anomaiuil 80
BDEMEHHBIX pAO0AX - O0OHA U3 BANCHLIX 3a0ay 60 MHOSUX cepax, mMaKkux Kax
NPOMbLULTIEHHOCMb,  uHancbl U Kubepbezonachocms. Jlannoe uccireoosanue
npoeoouUmcs ¢ UCHONb308aHUeM  Habopoe  oOannvlx  SKAB,  cneyuanvho
paspabomannvix paspabomuuxamu Ojsl  mecmuposarus mooeneu. Jamacemol
cooepocam NOKA3AHUsL PA3TUYHBIX OAMUYUKO8 (OasleHue, memnepamypa, cKopocmb
nomoxa u op.). B pabome ucnonvzyromesa maxue mooenu, kak LSTM Autoencoder,
Isolation Forest u memoo T? Xomennunea. B pesynemame cpasHumenbHo20 anaiu3a
ovino ycmauogneno, umo mooenv LSTM Autoencoder nokasana uaunyuuiue
pe3yIbmamol O CPAGHEHUIO C OPYSUMU MEMOOAMU.

KiarueBbie ciaoBa: BpemeHHble psanbl, aHomanuu, LSTM, Isolation Forest,
aHaIN3 JaHHBIX.

YAKBITTBIK KATAPJIAPJATBI AHOMAJIASIJIAPIBI
HEWPOXKEJILJIEP APKBLIIBI AHBIKTAY YIITH MOJEJILJIEP MEH
OJIICTEP

Anu /Kyban
Foinvimu srcemexmi: benonmnkas C.

Kazipri Tagma opTypii KypbUIFbUIAp KYH CalbIH OpacaH 30p KeJIeMJIe JePEKTep
YKUHAWTBIH 3aMaH/a, KaH/1al KOPCETKIITEP IiH KAJIBIITHI, aj KAaChICHIHBIH KaJIbIIITaH
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AyBITKUTBHIHBIH TYCIHY ©T€ MaHbBI3Abl. YaKBITTHIK KaTapjapJarbl aHOMATHSIIAPIbI
aHBIKTay — OHEPKACIN, KapKbl, KUOEpKAyilCi3diK CHSIKThl KOMNTEreH canaiapa
©3eKTI MIHJETTEep/iH Oipi Oosbin Tabwbutanbl. byn 3eprrey SKAB gen artanaTeid,
MOJICTIBJICP/Il TECTIICyTre apHaWbl 93ipJCHTCH JEPEKTEp YKUBIHTHIFBIHBIH KOMETIMCH
Kypriziaeni. byn gepekTep JKUBIHTBIFBI TYPJl CEHCOPJIAPIbIH KOPCETKIIITEPiH
(KbICBIM, TeMIepaTypa, aFbIH JKbUILAAMIBIFBI KoHE T.0.) KamTuabl. Kymbicta LSTM
Autoencoder, Isolation Forest xone XoremmuHrtiH T? oici CHSKTHI MOJEIbICP
Koaaaueuibl. CanpicThipMalibl Tasjay HoTwxkeciHae LSTM Autoencoder mopeni
0acka oICTEpPMEH CAJILICTBIPFAH/Ia €H KOFaphl HOTHIKEJICP KOPCETKCHI aHBIKTAJIIBI.

Kint ce3mepi: yakbITTBHIK Karapiap, aHomanusuiap, LSTM, Isolation Forest,
JEpPEKTEP/Il TAIIAy.
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